Cell Tissue Res, Jul 2012

p53-Dependent pathways in neurite outgrowth and axonal regeneration.

Di Giovanni S, Rathore K.



The tumor suppressor p53 is a multifunctional sensor of a number of cellular signals and pathways essential for cell biology, including DNA damage, cell cycle regulation, apoptosis, angiogenesis and cell metabolism. In the last few years, a novel role for p53 in neurobiology has emerged, which includes a role in the regulation of neurite outgrowth and axonal regeneration. p53 integrates a number of extracellular signals that involve neurotrophins and axon guidance cues to modulate the cytoskeletal response associated with neurite outgrowth at both the transcriptional and post-translational level. Here, we review our current knowledge of this topic and speculate about future research directions that involve p53 and related molecular pathways and that might advance our understanding of neurite outgrowth and axonal regeneration at the molecular level.


Read the full text