Neurol Genet., Feb 2020

Heritability of cervical spinal cord structure.

Solstrand Dahlberg L, Viessmann O, Linnman C



Measures of spinal cord structure can be a useful phenotype to track disease severity and development; this observational study measures the hereditability of cervical spinal cord anatomy and its correlates in healthy human beings.


Twin data from the Human Connectome Project were analyzed with semiautomated spinal cord segmentation, evaluating test-retest reliability and broad-sense heritability with an AE model. Relationships between spinal cord metrics, general physical measures, regional brain structural measures, and motor function were assessed.


We found that the spinal cord C2 cross-sectional area (CSA), left-right width (LRW), and anterior-posterior width (APW) are highly heritable (85%-91%). All measures were highly correlated with the brain volume, and CSA only was positively correlated with thalamic volumes (p = 0.005) but negatively correlated with the occipital cortex area (p = 0.001). LRW was correlated with the participant's height (p = 0.00027). The subjects' sex significantly influenced these metrics. Analyses of a test-retest data set confirmed validity of the approach.


This study provides the evidence of genetic influence on spinal cord structure. MRI metrics of cervical spinal cord anatomy are robust and not easily influenced by nonpathological environmental factors, providing a useful metric for monitoring normal development and progression of neurodegenerative disorders affecting the spinal cord, including-but not limited to-spinal cord injury and MS.

Read the full text